**⊕Outline

1. Introduction

- Negative Sampling in Recommendation
- Revisite Hard Negative Sampling
- Overview of Theoretical Structure
- **2. Preliminary**
- **3. Theoretical Analysis and Guidelines**
- **4. Experiments**

1.1 Negative Sampling in Recommendation

- \square Negative sampling
	- \checkmark In implict feedback, pair-wise loss functions require to select negative sample from large scale of non-interacted items.
	- \checkmark The effectiveness and efficiency of learning are limited.

Negative samping in implict feedback

1.1 Negative Sampling in Recommendation

- \square Classical sampling strategy
	- \checkmark Static Sampler: RNS, PNS
	- \checkmark Adaptive Sampler: DNS, Softmax based Sampler

Well Convergence is always at the heart of understanding of hard negative sampling !

\Box Empirical Experiments analysis

- \checkmark Full sampling: use all negative items to accelerate convergence.
- \checkmark Well convergence may not be the only justification !

1.2 Revisit Hard Negative Sampling

- **D** Different Opimization Objective
	- BPR optimizes AUC measure.
	- \checkmark BPR equipped with hard negative sampling optimizes One way Partial AUC (OPAUC) measure. [Theoretical Analysis]

 $TPR = TP / (TP + FN)$ $FPR = FP / (FP + TN)$

1.2 Revisit Hard Negative Sampling

□ OPAUC and TopK evaluation measures

- \checkmark Two simple cases that have the same overall ranking performance but quite different top ranking performance.
- \checkmark OPAUC has stronger connection with TopK evaluation measures.

1.3 Overview of Theoretical Structure

□ Why Hard Negative Sampling is effective?

\Box Future guidelines

- \checkmark Hard negative sampling strategy should have hyper parameter to adjust the level of sampling hardness.
- \checkmark The smaller the Kwe considered in TopKevaluation measures, the harder the negative samples we should draw.

v**Outline**

1. Introduction

2. Preliminary

- Hard Negative Sampling Strategies
- Distributionally Robust Optimization (DRO)
- **3. Theoretical Analysis and Guidelines**
- **4. Experiments**

2.1 Hard Negative Sampling Strategies

Implicit Feedback

$$
\min_{\theta} \sum_{c \in C} \sum_{i \in I_c^+} E_{j \sim P_{ns}(j|c)} \left[\ell \left(r(c, i | \theta) - r(c, j | \theta) \right) \right],
$$

 $P_{ns}(j|c)$ denotes the negative sampling probability that a negative item $j \in I_c^-$ in the context c is drawn

D Dynamic Negative Sampling (DNS) **p** Softmax based Sampling

$$
P_{ns}^{DNS}(j|c) = \begin{cases} \frac{1}{M}, & r_{cj} \in S_{I_c^-}^{\downarrow}[1,M] \\ 0, & r_{cj} \in others \end{cases}
$$

 $S_{I_C}^{\downarrow}[1,M] \subset I_C^-$ denotes the subset of negative samples who rank in topM.

$$
P_{ns}^{Softmax}(j|c) = \frac{\exp(r_{cj}/\tau)}{\sum_{k \in \mathcal{I}_c^-} \exp(r_{ck}/\tau)}
$$

$$
= \frac{\exp(r_{cij}/\tau)}{\sum_{k \in \mathcal{I}_c^-} \exp(r_{cik}/\tau)},
$$

2.2 Distributionally Robust Optimization (DRO)

D Formally Definition

 \checkmark DRO aims to minimize the expected risk over the worst-case distribution

Q, where Q is in a divergence ball around training distribution P.

$$
\min_{\theta} \sup_{Q} E_{Q} [\mathcal{L}(f_{\theta}(\mathbf{x}), y)]
$$

s.t. $D_{\phi}(Q||P) \le \rho$,

D Commen Divergence

$$
D_{CVaR}(Q||P) = \sup \log(\frac{dQ}{dP}).
$$

v**Outline**

- **1. Introduction**
- **2. Preliminary**

3. Theoretical Analysis and Guidelines

- Hard Negative Sampling Meets OPAUC
- OPAUC Meets TopK Evaluation Measures
- Hard Negative Sampling Understanding
- **4. Experiments**

p **Arguement:**

 \checkmark The model equipped with hard negative sampling approximately optimizes OPAUC.

D Theoretical Structure

 \checkmark The Lemma 1^[1] shows the equivalence between estimator of OPAUC and DRO object.

 \checkmark Based on DRO object, we prove the equivalence between hard negative sampling and OPAUC in Theorem 1 and Theorem 2.

[1] Dixian Zhu et al. 2022, When AUC meets DRO: Optimizing Partial AUC for Deep Learning with Non-Convex Convergence Guarantee

Lemma 1

• DRO over negative distribution P_0

 \checkmark OPAUC Estimator

$$
\widehat{OPAUC}(\beta) = 1 - \frac{1}{|C|} \sum_{c \in C} \frac{1}{n_+} \frac{1}{n_-} \sum_{i \in T_c^+} \sum_{j \in S_{T_c^-}^{\downarrow} [1, n_- \beta]} \mathbb{I}(r_{ci} < r_{cj}),
$$
\n
$$
\min_{\theta} \frac{1}{|C|} \sum_{c \in C} \frac{1}{n_+} \sum_{i \in T_c^+} \frac{1}{n_- \beta} \sum_{j \in S_{T_c^-}^{\downarrow} [1, n_- \beta]} L(c, i, j). \tag{12}
$$

LEMMA 1 (THEOREM 1 OF [25]). By choosing CVaR divergence $D_{\phi} = D_{CVaR}(Q||P_0) = \sup \log(\frac{dQ}{dP_0})$, then problem (13) reduces to $\min_{\theta} \min_{\eta \geq 0} \frac{1}{|C|} \sum_{c \in C} \frac{1}{n_+} \sum_{i \in T^+} \left\{ \frac{1}{\exp(-\rho)} \cdot E_{j \sim P_0} \left[(L(c, i, j) - \eta_i)_+ \right] + \eta_i \right\},\right.$ (14)

where P_0 denotes uniform distribution over I_c^- . If ℓ is a monotonically decreasing function for $\ell(\cdot) \geq 0$ and setting $\beta = \exp(-\rho)$, the objective in (13) is equivalent to (12) of OPUAC(β).

D Theorem 1

THEOREM 1. By choosing $P_{ns} = P_{ns}^{DNS}$ and $M = n - \beta$, then the DNS sampling based problem (1) is equivalent to (12) of OPU AC(β).

$$
\min_{\theta} \sum_{c \in C} \sum_{i \in I_c^+} E_{j \sim P_{ns}(j|c)} \left[\ell \left(r(c, i | \theta) - r(c, j | \theta) \right) \right],
$$
\n
$$
P_{ns}^{DNS}(j|c) = \begin{cases} \frac{1}{M}, & r_{cj} \in S_{I_c^-}^{\downarrow} [1, M] \\ 0, & r_{cj} \in others \end{cases},
$$
\n
$$
(1)
$$
\n
$$
(2)
$$
\n
$$
(3)
$$
\n
$$
(4)
$$
\n
$$
(5)
$$
\n
$$
(1)
$$
\n
$$
(2)
$$

Remark:

1) The DNS sampling based problem is an exact but non smooth estimator of OPUAC(). 2) The hyperparameter M in DNS strategy directly determines in OPAUC objective.

Theorem 2

THEOREM 2. By choosing $P_{ns} = P_{ns}^{Softmax}$ $\min_{\theta} \sum_{c \in C} \sum_{i \in I_c^+} E_{j \sim P_{ns}(j|c)} \left[\ell \left(r(c, i | \theta) - r(c, j | \theta) \right) \right],$ $\tau = \sqrt{\frac{\text{Var}_j(L(c, i, j))}{-2 \log \beta}},$ $P_{ns}^{Softmax}(j|c) = \frac{\exp(r_{cj}/\tau)}{\sum_{k \in I_c^-} \exp(r_{ck}/\tau)}$ (15) $Var_j(L(c, i, j)) = E_{j \sim P_0} [(L(c, i, j) - E_{j \sim P_0} [L(c, i, j)])^2],$ (16) $= \frac{\exp(r_{cij}/\tau)}{\sum_{k \in I_c^-} \exp(r_{cik}/\tau)},$ the softmax sampling based problem (1) is a surrogate version of (12) of OPU $AC(\beta)$.

Remark:

- **1) The softmax distribution based sampling problem is a smooth but inexact estimator of OPAUC().**
- **2) We propose to use an adaptive , instead of a fixed in softmax distribution. This ensures the optimization objective OPAUC(** β **) remains the same during training**

p **Arguement:**

- \checkmark Compared to AUC measure, OPAUC(β) has stronger correlation with TopK evaluation measures.
- A smaller K in Top K evaluation measures has stronger correlation with a smaller β in OPAUC(β).

3.2 OPAUC Meets TopK Evaluation Measures

D Theoretical Analysis

THEOREM 3. Suppose there are N_+ positive items and N_- negative items, where $N_+ > K$ and $N_- > K$. For any permutation of all items in descending order, we have

$$
\frac{1}{N_{+}}\left[\frac{N_{+}+K-\sqrt{(N_{+}+K)^{2}-4N_{+}N_{-}} \times OPAUC(\beta)}{2}\right]
$$
\n
$$
\leq Recall(\varnothing K \leq \frac{1}{N_{+}}\left[\sqrt{N_{+}N_{-}} \times OPAUC(\beta)\right],
$$
\n
$$
\frac{1}{K}\left[\frac{N_{+}+K-\sqrt{(N_{+}+K)^{2}-4N_{+}N_{-}} \times OPAUC(\beta)}{2}\right]
$$
\n
$$
\leq Precision(\varnothing K \leq \frac{1}{K}\left[\sqrt{N_{+}N_{-}} \times OPAUC(\beta)\right],
$$
\n
$$
where \beta = \frac{K}{N_{-}}.
$$
\n(18)

Remark: 1) The top*K* **evaluation measure Precision@Kand Recall@Kare higher and lower bounded by specific OPAUC(** β), where $\beta = \frac{K}{N}$ N_{-} **2) The smaller the** *K* **is, the smaller the** β $\left(=\frac{K}{N}\right)$ N_{-} **) should be considered.**

3.2 OPAUC Meets TopK Evaluation Measures

D Simulation Experiments

Remark:

1) The correlation coefficient of the highest point of the curve is much larger than the correlation coefficient when β **is equal to 1.**

2) Given a specific K in TopK measure, the correlation coefficient with Norm_OPAUC(β **) get the maximum value at a specific** β **.**

3.2 OPAUC Meets TopK Evaluation Measures

D Simulation Experiments

Remark:

1) For different K, the peak of the curve varies according to β **.**

2) On the left side of the peak of the curve, we find that the correlation coefficient of NDCG@K descend more slowly than other two measures.

3.3 Hard Negative Sampling Understanding

D Corollary:

COROLLARY 1. Hard negative sampling approximately optimizes TopK evaluation measures while the parameter K is determined by the level of sampling hardness.

Guidelines:

- \checkmark To adapt to different TopK evaluation measures and datasets, hard negative sampling strategy should have hyperparameter to adjust the level of sampling hardness.
- \checkmark The smaller the K we considered in TopK evaluation measures, the harder the negative samples we should draw.

3.3 Hard Negative Sampling Understanding

D Converted Algorithms:

v**Outline**

1. Introduction

2. Preliminary

3. Theoretical Analysis and Guidelines

4. Experiments

- **Q1: Can experiment results validate our guidelines?**
- **Q2: How do fine tuned parameters benefit models?**
- **Q3: Can the converted model outperform baselines?**

(RQ1) Performance with Different Sampling Distributions

Figure 8: The effect of M in DNS(M, N), where N is set to 200, 200, 500 for Gowalla, Yelp and Amazon respectively.

higher sampling hardness.

 \checkmark For all datasets and all measures, the lower the *in* TopK measures is, the smaller the M in DNS(M, N) when the curve achieve its maximum performance.

(RQ1) Performance with Different Sampling Distributions

Figure 9: The effect of N in DNS(M, N), where K is set to 5 for all three datasets.

 \checkmark For all datasets and all measures, the lower the K in Top K measures is, the larger the N in DNS(M, N) when the curve achieve its maximum performance.

(RQ1) Performance with Different Sampling Distributions

Figure 10: The effect of ρ in Softmax-v(ρ , N), where N is set to 200, 200, 500 for Gowalla, Yelp and Amazon respectively.

 \checkmark For all datasets and all measures, the lower the K in TopK measures is, the larger the ρ in Softmax-v(ρ , N) when the curve achieve its maximum performance.

(RQ2, RQ3) Performance Comparison

Remark:

1) Benefited from the adjustable sampling hardness, the converted DNS(M*, N) and Softmax-v significantly outperform their original versions.

2) The converted hard negative sampling methods perform state-of-the-art baselines.

5. Conclusion

- 1. We prove that the model equipped with hard negative sampling approximately optimizes OPAUC, where DNS is an exact estimator and softmax based sampling is a soft estimator.
- 2. We conduct theoretical analysis, simulation studies, and real world experiments to validate the stronger correlation between OPAUC and TopKevaluation measures.
- 3. We provide two important guidelines on how to design hard negative sampling strategies. Through theoretical analysis and experiments analysis, we conclude that the smaller the K in Top K measure is, the harder the negative items we should sample.