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Background and Motivation

❑ Knowledge Graphs (KGs) is a structured representation of facts, 
consisting of entities, relationships and semantic descriptions.
Ø applied in dialogue generation, question answering, recommender 

systems.
Ø changed the paradigm for numerous state-of-the-art natural 

language processing solutions.

An example of 
knowledge base and 
knowledge graph

Figure credit to S. Ji’s survey (A Survey on Knowledge Graphs: Representation, 
Acquisition and Applications)
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Background and Motivation

❑ Knowledge Graphs (KGs) is a structured representation of facts, 
consisting of entities, relationships and semantic descriptions.
Ø Due to the constantly emerging new knowledge, they are still far 

away from completeness

4
Figure credit to J. sheng et al. 2020 Adaptive Attentional Network for Few-Shot
Knowledge Graph Completion



Knowledge Graph Embedding

❑ Distance-based model
1. Inspired by the capability observed in 

Word2vec （ℎ + 𝑟 ≈ 𝑡 ）.
2. Gradually developed into various space 

(the complex space or Polar coordinates)
(transE [2013], transR [2016], RotatE [2019])
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❑ Semantic models
1. consider the KG as a 3D adjacency 

matrix
2. score function is computed as a bilinear 

product ∅ ℎ, 𝑟, 𝑡 = ℎ×𝑟×𝑡
(DistMult [2015], ComplexE [2016])

Figure credit to S. Ji’s survey (A Survey on Knowledge Graphs: Representation, 
Acquisition and Applications)

Figure credit to Z. Sun et al. 2019 ICLR ROTATE: KNOWLEDGE 
GRAPH EMBEDDING BY RELATIONAL
ROTATION IN COMPLEX SPACE



Knowledge Graph Embedding

❑ Neural network based models 
1. leverage 2D convolution network to model the 

interaction. 
2. GCN constructs the encoder-decoder paradigm 

in knowledge graph completion.

Define a score function and make sure 
𝑺𝒑𝒐𝒔 > 𝑺𝒏𝒆𝒈 6

(ConvE [2018], SACN 
[2019], 
CompGCN [2020]) 



Drawbacks
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❑ Ignore the entanglement of the 
latent factors behind the entity 
embeddings.

❑ The static representation fails to 
effectively model the critical 
relationship

❑ In the light of the above two points, 
these methods result in low 
interpretability and non-robustness.
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Research Goal and Challenges

❑ Goal: provide a novel Disentangled Knowledge graph embedding 
framework which could predict adaptively according to the given 
scenario.
Ø Capture the latent factor[1].
Ø Micro-disentanglement and Macro-disentanglement[2, 3].

[1]Jianxin Ma, et al. Disentangled graph convolutional networks. In ICML2019.
[2] Yanbei Liu, et al 2020. Independence promoted graph disentangled networks. In  AAAI2020
[3] Shuai Zheng, et al. Adversarial Graph Disentanglement. 2021 arXiv preprint arXiv:2103.07295(2021) 

Figure credit to J. Ma et al. Disentangled graph convolutional networks, 
ICML2019 and S. Zheng et al. Adversarial Graph Disentanglement
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Framework
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An architecture overview of our DisenKGAT. The whole model contains three key 
modules: (1) relation-aware aggregation, (2) independence constraint, and (3) 
adaptive scoring. 
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Model
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Relation-aware Aggregation

Disentangled Transformation
ℎ!,#5 = 𝜎 𝑊# 2 𝑥! Normalization will hurt the final performance

Explicitly combine crucial information-the edge relation

the more similar the entity 𝑢 and the 
neighbor 𝑣 are in the 𝑘-th 
component in terms of their relation 
𝑟 , the more likely the factor 𝑘 is to 
be the reason for the connection.
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Model

Independence Constraint
❑ Mutual information

❑ Mutual Information Minimization

Ø Nonlinear dependence is crucial in complex Knowledge Graph.

Ø utilize the contrastive log-ratio upper bound MI estimator[1]

Ø leverage a variational distribution 𝑞!( ℎ",$ ℎ",%) to approximate the real 

conditional one.
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[1] Pengyu Chenge.et al. CLUB: A Contrastive Log-ratio Upper Bound of Mutual Information. 2020ICML

ℒ 9",-,9",. = 𝒟#$ 𝑝 ℎ!,7 ℎ!,8 ||𝑞<( ℎ!,7 ℎ!,8))
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Model

Adaptive Scoring
❑ Component-level prediction

ü compute the score for each candidate triplets (u, r, v)
ü take ConvE as an example

❑ Relation-aware attentive fusion
ü the best-matched component representation should be closer to the given 

relation embedding.
ü 𝜽𝒓is shared with the relation-aware aggregation module.
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Experiment

❑ How does DisenKGAT perform compared to existing aproaches, w.r.t. 
distance-based and semantic matching models?

❑ How do the critical components (e.g., relation-aware aggregation) 
contribute to DisenKGAT and how do different hyperparameters (e.g., 
factor number) affect DisenKGAT?

❑ Does DisenKGAT work robustly with other decoder modules?
❑ Can DisenKGAT give explanations of the benefits brought by the 

disentangled factors?
Baseline:

ü Distance-based model (TransE, RotatE )

ü Semantic models (DistMult, RESCAL)

ü Neural network based models (ConvE, InteractE, SACN, 

ArcE, ReinceptionE, COMPGCN)
13



Performance

• DisenKGAT achieve a considerable improvement on FB15k-237 which includes 237 relations

• WN18RR only contain 11 relation types.
14



Performance

• GNN-based models (W-GCN, COMPGCN) are superior to RotatE on complex relation 
types (1-N, N-1, N-N)

• RotatE outperforms W-GCN and COMPGCN on simple relation (1-1) including 
symmetry/antisymmetry, composition, and inversion.

• Our model outperforms other models by a large margin in both simple and complex 
relations.
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Performance

• Without micro-disentanglement, the model degrades to vanilla GCN-
based model.

• Without macro-disentanglement, each component is prone to entangle 
again! 

• HSIC is not suitable for more complex heterogeneous graphs.
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Performance

• K=1, it degrades into a normal GNN-based model but coupling with 
attention aggregation and relation-aware mapping.

• K>4, it makes some topics too fine-grained to carry crucial information.
• the performance on WN18RR collapses significantly in term to its simple 

meaning.
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Performance

• Subtraction (Sub): ∅ 𝑒,, 𝑒& , 𝜃 = 𝜃& C 𝑒, − 𝑒&
• Multiplication(Mult): ∅ 𝑒,, 𝑒& , 𝜃 = 𝜃& C 𝑒, ∘ 𝑒&
• Circular correlation(Corr): ∅ 𝑒,, 𝑒& , 𝜃 = 𝜃& C 𝑒, ⋆ 𝑒&
• Crossover Interaction(Cross): 𝜙 𝑒,, 𝑒& , 𝜃 = 𝜃& C 𝑒, + 𝜃& 𝑒, ∘ 𝑒& 18



Performance

• Construct a distinguishable clusters potentially.

• Topic or cluster in each component of various entities should be shared all the time. 19



Summary

❑ We propose a novel Disentangled Knowledge attention 
network, DisenKGAT. 

❑ We take the micro-macro disentanglement into 
consideration simultaneously.

❑ We look forward to explore a more general disentangled 
framework that could adapt to more complex scenarios.
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Future

❑ More flexible disentanglement combine with adaptive K.

❑ Disentanglement in more research areas.

❑ Contrastive learning in KG.


