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❑ The core idea of CL is to learn representations that draw positive
samples nearby and push away negative samples.

❑ Loss function : InfoNCE

Background and Motivation

[1] Chen, Ting, et al. A simple framework for contrastive learning of visual representations. ICML2020
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❑ Sampling bias leads to performance drop:
Ø Negative counterparts are commonly drawn uniformly from the training 

data.
Ø True labels or true semantic similarity are typically not available …

Background and Motivation

[1] Chuang, Ching-Yao, et al. "Debiased contrastive learning." NeurIPS2020
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Background and Motivation

[1] Ching-Yao Chuang et. al,Debiased contrastive learning. In NeurIPS 2020.
[2] Joshua David Robinson et al. Contrastive learning with hard negative samples. In ICLR 2021.

❑ Motivation: InfoNCE has the ability to mitigate sampling bias.
Ø By fine-tuning the temperature 𝜏, basic SimCLR demonstrates significant 

improvement
Ø With an appropriately selected 𝜏, the relative improvements realized by 

DCL[1] and HCL[2] are marginal.
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Background and Motivation

[1] Ching-Yao Chuang et. al,Debiased contrastive learning. In NeurIPS 2020.
[2] Joshua David Robinson et al. Contrastive learning with hard negative samples. In ICLR 2021.

❑ Motivation: InfoNCE has the ability to mitigate sampling bias.
Ø By fine-tuning the temperature 𝜏, basic SimCLR demonstrates significant 

improvement
Ø With an appropriately selected 𝜏, the relative improvements realized by 

DCL[1] and HCL[2] are marginal.

1) Why does CL exhibit tolerance to sampling 
bias? 
2) What role does 𝜏 play, and why is it so 
important?
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Understanding CL from DRO

❑ Preliminary
Ø DRO aims to minimize the worst-case expected loss over a set of 

potential distributions.

Ø 𝐿!"#$% aims to increase the embedding similarity between the positive 
instances and decreases that of the negative ones.

Ø CL-DRO improves 𝐿!"#$% by incorporating DRO on the negative side.
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Understanding CL from DRO

❑ Understanding CL from DRO

The DRO enables CL to perform well across various potential 
distributions and thus equips it with the capacity to alleviate 
sampling bias.
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Understanding CL from DRO

❑ The role of 𝜏
Ø Adjusting robust radius

1. There is an evident trade-off in the selection of 𝜏.
2. As the ratio of false negative instances increases 

(r ranges from 0 to 1), the robustness radius 
increases and the optimal 𝜏 decreases.



10

Understanding CL from DRO

❑ The role of 𝜏
Ø Controlling variance of negative samples

Ø Hard-mining.
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Understanding CL from DRO

❑ The role of 𝜏
Ø Controlling variance of negative samples
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DRO, InfoNCE & Mutual Information

❑ Relations among DRO, InfoNCE and Mutual Information
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DRO, InfoNCE & Mutual Information

❑ Relations among DRO, InfoNCE and Mutual Information
Ø InfoNCE is a tighter MI estimation.[1]

Ø DRO bridges the gap between MI and InfoNCE
“MINE uses a critic in Donsker-Varadhan target to derive a bound that is neither an upper nor lower bound on MI, 
while CPC relies on unnecessary approximations in its proof, resulting in some redundant approximations”

Ø DRO provides general MI estimation.

[1] Avraham Ruderman, et al. Tighter variational representations of f-divergences via restriction to probability measures. In ICML 2012.
[2] Ben Poole, etl al. On variational bounds of mutual information. In ICML 2019.
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Method

❑ Shortcomings of InfoNCE

Ø Too conservative: overemphasizing on the hardest negative samples.
Ø Sensitive to outliers: DRO’s weakness.

❑ Adjusted InfoNCE (ADNCE)

Our goal is to refine the worst-case distribution, 
aiming to assign more reasonable weights to 
negative instances.
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Experiments

❑ Images

1. ADNCE exhibits sustained improvement and notably 
enhances performance in the early stages of training.

2. Training curve to further illustrate the stable superiority 
of ADNCE.
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Experiments

❑ Sentences and Graphs

1. The improvements of 𝜏∗ over 𝜏" emphasize 
the significance of selecting a proper
robustness radius.

2. ADNCE outperforms all baselines with a 
significant margin on four datasets
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Summary

❑ We provide a novel perspective on contrastive learning (CL) via the lens of 

Distributionally Robust Optimization (DRO)

Ø key insights about the tolerance to sampling bias

Ø the role of 𝜏

Ø the theoretical connection between DRO and MI

❑ We propose a novel CL loss— ADNCE

Ø alleviate over-conservatism and sensitivity to outliers.
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