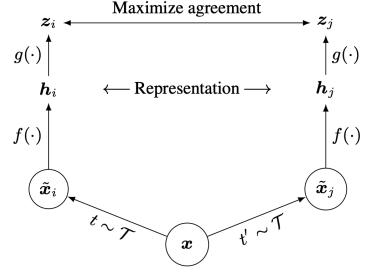


Understanding Contrastive Learning via Distributionally Robust Optimization

Authors: Junkang Wu, Jiawei Chen, Jiancan Wu, Wentao Shi, Xiang Wang & Xiangnan He Paper: https://arxiv.org/pdf/2310.11048.pdf Lab: USTC Lab for Data Science Code: https://github.com/junkangwu/ADNCE Date: Oct 31, 2023

The core idea of CL is to learn representations that draw positive samples nearby and push away negative samples.



Loss function : InfoNCE

$$\ell_{i,j} = -\log \frac{\exp(\sin(\boldsymbol{z}_i, \boldsymbol{z}_j)/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(\sin(\boldsymbol{z}_i, \boldsymbol{z}_k)/\tau)},$$

[1] Chen, Ting, et al. A simple framework for contrastive learning of visual representations. ICML2020

Background and Motivation

Sampling bias leads to performance drop:

- Negative counterparts are commonly drawn uniformly from the training data.
- > True labels or true semantic similarity are typically **not available** ...

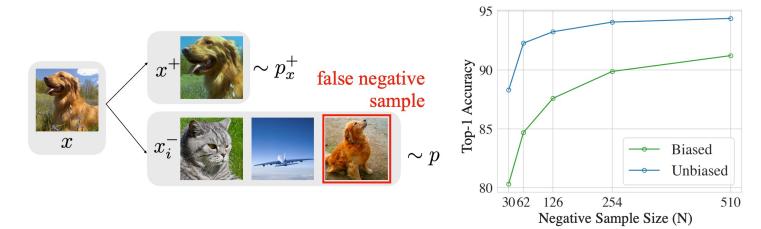


Figure 1: "Sampling bias": The common practice of drawing negative examples x_i^- from the data distribution p(x) may result in x_i^- that are actually similar to x. Figure 2: Sampling bias leads to performance drop: Results on CIFAR-10 for drawing x_i^- from p(x) (biased) and from data with different labels, i.e., truly semantically different data (unbiased).

Motivation: InfoNCE has the ability to mitigate sampling bias.

- By fine-tuning the temperature τ, basic SimCLR demonstrates significant improvement
- With an appropriately selected τ, the relative improvements realized by DCL[1] and HCL[2] are marginal.

Model	CIFAR10		STL10		
	Top-1	au	Top-1	au	
$\frac{\text{SimCLR}(\tau_0)}{\text{SimCLR}(\tau^*)}$	91.10	0.5	81.05	0.5	
	92.19	0.3	87.91	0.2	
$ ext{DCL}(au_0) \\ ext{DCL}(au^*) ext{}$	92.00 (-0.2%)	0.5	84.26 (-4.2%)	0.5	
	92.09 (-0.1%)	0.3	88.20 (+1.0%)	0.2	
$\frac{\text{HCL}(\tau_0)}{\text{HCL}(\tau^*)}$	92.12 (-0.0%)	0.5	87.44 (-0.5%)	0.5	
	92.10 (-0.0%)	0.3	87.46 (-0.5%)	0.2	

[1] Ching-Yao Chuang et. al, Debiased contrastive learning. In NeurIPS 2020.

[2] Joshua David Robinson et al. Contrastive learning with hard negative samples. In ICLR 2021.

Motivation: InfoNCE has the ability to mitigate sampling bias.

- By fine-tuning the temperature τ, basic SimCLR demonstrates significant improvement
- With an appropriately selected τ, the relative improvements realized by DCL[1] and HCL[2] are marginal.

Model	CIFAR10		STL10		
1,10,001	Top-1	au	Top-1	au	
$\frac{\text{SimCLR}(\tau_0)}{\text{SimCLR}(\tau^*)}$	91.10	0.5	81.05	0.5	
	92.19	0.3	87.91	0.2	
$ ext{DCL}(au_0) \\ ext{DCL}(au^*) ext{}$	92.00 (-0.2%)	0.5	84.26 (-4.2%)	0.5	
	92.09 (-0.1%)	0.3	88.20 (+1.0%)	0.2	
$\frac{\text{HCL}(\tau_0)}{\text{HCL}(\tau^*)}$	92.12 (-0.0%)	0.5	87.44 (-0.5%)	0.5	
	92.10 (-0.0%)	0.3	87.46 (-0.5%)	0.2	

[1] Ching-Yao Chuang et. al, Debiased contrastive learning. In NeurIPS 2020.

[2] Joshua David Robinson et al. Contrastive learning with hard negative samples. In ICLR 2021.

Motivation: InfoNCE has the ability to mitigate sampling bias.

- > By fine-tuning the temperature τ , basic SimCLR demonstrates significant improvement
- With an appropriately selected τ, the relative improvements realized by DCL[1] and HCL[2] are marginal.

I) Why does CL exhibit tolerance to sampling bias? 2) What role does τ play, and why is it so important?

[1] Ching-Yao Chuang et. al, Debiased contrastive learning. In NeurIPS 2020.[2] Joshua David Robinson et al. Contrastive learning with hard negative samples. In ICLR 2021.

Preliminary

DRO aims to minimize the worst-case expected loss over a set of potential distributions.

$$\mathcal{L}_{\text{DRO}} = \max_{Q} \mathbb{E}_{Q} [\mathcal{L}(x;\theta)] \qquad \text{s.t. } D_{\phi}(Q||Q_{0}) \leq \eta,$$

> L_{basic} aims to increase the embedding similarity between the positive instances and decreases that of the negative ones.

$$L_{\text{basic}} = -\mathbb{E}_{P_X} \left[\mathbb{E}_{P_0} [f_\theta(x, y^+)] - \mathbb{E}_{Q_0} [f_\theta(x, y)] \right]$$

 \succ CL-DRO improves L_{basic} by incorporating DRO on the negative side.

$$\mathcal{L}_{\text{CL-DRO}}^{\phi} = -\mathbb{E}_{P_X} \left[\mathbb{E}_{P_0} [f_{\theta}(x, y^+)] - \max_Q \mathbb{E}_Q [f_{\theta}(x, y)] \right] \qquad \text{s.t. } D_{\phi}(Q||Q_0) \le \eta.$$
(3)

Understanding CL from DRO

Theorem 3.2. By choosing KL divergence $D_{KL}(Q||Q_0) = \int Q \log \frac{Q}{Q_0} dx$, optimizing CL-DRO (cf. Equation (3)) is equivalent to optimizing CL (InfoNCE, cf. Equation (1)):

$$\mathcal{L}_{CL-DRO}^{KL} = -\mathbb{E}_{P_X} \left[\mathbb{E}_{P_0} [f_{\theta}(x, y^+)] - \min_{\alpha \ge 0, \beta} \max_{Q \in \mathbb{Q}} \{ \mathbb{E}_Q [f_{\theta}(x, y)] - \alpha [D_{KL}(Q||Q_0) - \eta] + \beta (\mathbb{E}_{Q_0} [\frac{Q}{Q_0}] - 1) \} \right]$$

$$= -\mathbb{E}_{P_X} \mathbb{E}_{P_0} \left[\alpha^*(\eta) \log \frac{e^{f_{\theta}(x, y^+) / \alpha^*(\eta)}}{\mathbb{E}_{Q_0} [e^{f_{\theta}(x, y) / \alpha^*(\eta)}]} \right] + Constant$$

$$= \alpha^*(\eta) \mathcal{L}_{InfoNCE} + Constant, \qquad (4)$$

where α, β represent the Lagrange multipliers, and $\alpha^*(\eta)$ signifies the optimal value of α that minimizes the Equation (4), serving as the temperature τ in CL.

The DRO enables CL to perform well across various potential distributions and thus equips it with the capacity to **alleviate sampling bias.**

Understanding CL from DRO

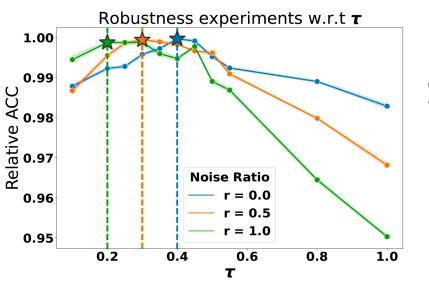
The role of au

> Adjusting robust radius

Corollary 3.4. [*The optimal* α - *Lemma 5 of Faury et al.* [46]] *The value of the optimal* α (i.e., τ) *can be approximated as follow:*

$$\tau \approx \sqrt{\mathbb{V}_{Q_0}[f_\theta(x,y)]/2\eta},\tag{6}$$

where $\mathbb{V}_{Q_0}[f_{\theta}(x,y)]$ denotes the variance of $f_{\theta}(x,y)$ under the distribution Q_0 .



 There is an evident trade-off in the selection of τ.
 As the ratio of false negative instances increases (r ranges from 0 to 1), the robustness radius increases and the optimal τ decreases.

$\Box \ \ \textbf{The role of } \tau$

Controlling variance of negative samples

Theorem 3.5. Given any ϕ -divergence, the corresponding CL-DRO objective could be approximated as a mean-variance objective:

$$\mathcal{L}_{CL-DRO}^{\phi} \approx -\mathbb{E}_{P_X} \left[\mathbb{E}_{P_0} [f_{\theta}(x, y^+)] - \left(\mathbb{E}_{Q_0} [f_{\theta}(x, y)] + \frac{1}{2\tau} \frac{1}{\phi^{(2)}(1)} \cdot \mathbb{V}_{Q_0} [f_{\theta}(x, y)] \right) \right], \quad (7)$$

where $\phi^{(2)}(1)$ denotes the the second derivative value of $\phi(\cdot)$ at point 1, and $\mathbb{V}_{Q_0}[f_{\theta}]$ denotes the variance of f under the distribution Q_0 .

Specially, if we consider KL divergence, the approximation transforms:

$$\mathcal{L}_{CL-DRO}^{KL} \approx -\mathbb{E}_{P_X} \left[\mathbb{E}_{P_0} [f_\theta(x, y^+)] - \left(\mathbb{E}_{Q_0} [f_\theta(x, y)] + \frac{1}{2\tau} \mathbb{V}_{Q_0} [f_\theta(x, y)] \right) \right].$$
(8)

Hard-mining.

$$\mathcal{L}_{CL\text{-}DRO}^{KL} = -\mathbb{E}_{P_X} \left[\mathbb{E}_{P_0} [f_{\theta}(x, y^+)] - \min_{\alpha \ge 0, \beta} \max_{Q \in \mathbb{Q}} \{ \mathbb{E}_Q [f_{\theta}(x, y)] - \alpha [D_{KL}(Q||Q_0) - \eta] + \beta (\mathbb{E}_{Q_0} [\frac{Q}{Q_0}] - 1) \} \right]$$

$$Q^* = \frac{e^{\frac{f_{\theta}}{\alpha^*}}}{\mathbb{E}_{Q_0} [e^{\frac{f_{\theta}}{\alpha^*}}]} Q_0$$

10

$\Box \quad \textbf{The role of } \tau$

Controlling variance of negative samples

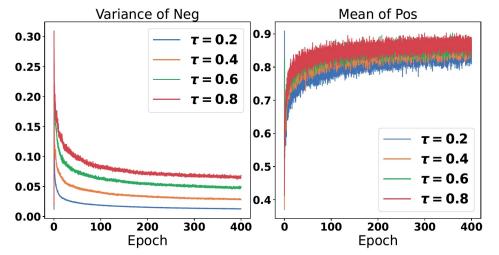
Theorem 3.5. Given any ϕ -divergence, the corresponding CL-DRO objective could be approximated as a mean-variance objective:

$$\mathcal{L}_{CL-DRO}^{\phi} \approx -\mathbb{E}_{P_X} \left[\mathbb{E}_{P_0} [f_{\theta}(x, y^+)] - \left(\mathbb{E}_{Q_0} [f_{\theta}(x, y)] + \frac{1}{2\tau} \frac{1}{\phi^{(2)}(1)} \cdot \mathbb{V}_{Q_0} [f_{\theta}(x, y)] \right) \right], \quad (7)$$

where $\phi^{(2)}(1)$ denotes the second derivative value of $\phi(\cdot)$ at point 1, and $\mathbb{V}_{Q_0}[f_{\theta}]$ denotes the variance of f under the distribution Q_0 .

Specially, if we consider KL divergence, the approximation transforms:

$$\mathcal{L}_{CL-DRO}^{KL} \approx -\mathbb{E}_{P_X} \left[\mathbb{E}_{P_0} [f_\theta(x, y^+)] - \left(\mathbb{E}_{Q_0} [f_\theta(x, y)] + \frac{1}{2\tau} \mathbb{V}_{Q_0} [f_\theta(x, y)] \right) \right].$$
(8)



Model	Cifar	·10	Stl10			
	Top-1	au	Top-1	au		
$\frac{\text{SimCLR}(\tau_0)}{\text{SimCLR}(\tau^*)}$	91.10 92.19	0.5 0.3	81.05 87.91	0.5 0.2		
MW	<u>91.81</u>	0.3	87.24	0.2		

Relations among DRO, InfoNCE and Mutual Information

Definition 4.1 (ϕ -MI). The ϕ -divergence-based mutual information is defined as:

$$I_{\phi}(X;Y) = D_{\phi}(P(X,Y)||P(X)P(Y)) = \mathbb{E}_{P_X}[D_{\phi}(P_0||Q_0)].$$
(9)

Theorem 4.2. For distributions P, Q such that $P \ll Q$, let \mathcal{F} be a set of bounded measurable functions. Let CL-DRO draw positive and negative instances from P and Q, marked as $\mathcal{L}_{CL-DRO}^{\phi}(P,Q)$. Then the CL-DRO objective is the tight variational estimation of ϕ -divergence. In fact, we have:

$$D_{\phi}(P||Q) = \max_{f \in \mathcal{F}} -\mathcal{L}_{CL-DRO}^{\phi}(P,Q) = \max_{f \in \mathcal{F}} \mathbb{E}_{P}[f] - \min_{\lambda \in \mathbb{R}} \{\lambda + \mathbb{E}_{Q}[\phi^{*}(f-\lambda)]\}.$$
 (10)

Here, the choice of ϕ in CL-DRO corresponds to the probability measures in $D_{\phi}(P||Q)$. And ϕ^* denotes the convex conjugate.

1958

Relations among DRO, InfoNCE and Mutual Information

InfoNCE is a tighter MI estimation.[I]

$$D_{\phi}(P||Q) \coloneqq \max_{f \in \mathcal{F}} \{ \mathbb{E}_P[f] - \mathbb{E}_Q[\phi^*(f)] \}.$$

 $D_{\phi}(P||Q) \coloneqq \max_{f \in \mathcal{F}} \{ \mathbb{E}_{P}[f] - \min_{\lambda \in \mathbb{R}} \{ \lambda + \mathbb{E}_{Q}[\phi^{*}(f - \lambda)] \} \}$

DRO bridges the gap between MI and InfoNCE

"MINE uses a critic in Donsker-Varadhan target to derive a bound that is **neither an upper nor lower bound** on MI, while CPC relies on **unnecessary approximations** in its proof, resulting in some redundant approximations"

DRO provides general MI estimation.

[1] Avraham Ruderman, et al. Tighter variational representations of f-divergences via restriction to probability measures. In ICML 2012.
 [2] Ben Poole, etl al. On variational bounds of mutual information. In ICML 2019.

Shortcomings of InfoNCE

- Too conservative: overemphasizing on the hardest negative samples.
- Sensitive to outliers: DRO's weakness.

Adjusted InfoNCE (ADNCE)

Our goal is to refine the worst-case distribution, aiming to assign more **reasonable** weights to negative instances.

$$w(f_{\theta}(x,y),\mu,\sigma) \propto \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{f_{\theta}(x,y)-\mu}{\sigma}\right)^2\right],$$
(11)

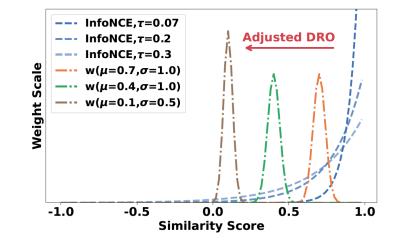


Figure 3: We visualize the training weight of negative samples *w.r.t.* similarity score. InfoNCE (in BIUE) over-emphasize hard negative samples, while ADNCE utilizes the weight w (in ORANGE, GREEN, BROWN) to adjust the distribution.

$$\mathcal{L}_{\text{ADNCE}} = -\mathbb{E}_P[f_\theta(x, y^+)/\tau] + \log \mathbb{E}_{Q_0}[w(f_\theta(x, y), \mu, \sigma)e^{f_\theta(x, y)/\tau}/Z_{\mu, \sigma}], \mathbf{u}$$

Images

Model	CIFAR10			STL10					CIFAR100			
wouer	100	200	300	400	100	200	300	400	100	200	300	400
InfoNCE (τ_0)	85.70	89.21	90.33	91.01	75.95	78.47	80.39	81.67	59.10	63.96	66.03	66.53
InfoNCE (τ^*)	86.54	89.82	91.18	91.64	81.20	84.77	86.27	87.69	62.32	66.85	68.31	69.03
α -CL-direct	87.65	90.11	90.88	91.24	80.91	84.71	87.01	87.96	62.75	66.27	67.35	68.54
ADNCE	87.67	90.65	91.42	91.88	81.77	85.10	87.01	88.00	62.79	66.89	68.65	69.35

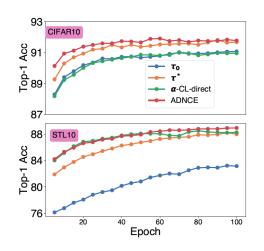


Figure 4: Learning curve for Top-1 accuracy by linear evaluation on CIFAR10 and STL10.

- I. ADNCE exhibits sustained improvement and notably enhances performance in the early stages of training.
- 2. Training curve to further illustrate the stable superiority of ADNCE.

Sentences and Graphs

Model	STS12	STS13	STS14	STS15	STS16	STS-B	SICK-R	Avg.
GloVe embeddings (avg.)*	55.14	70.66	59.73	68.25	63.66	58.02	53.76	61.32
BERT _{base} -flow [♣]	58.40	67.10	60.85	75.16	71.22	68.66	64.47	66.55
BERT _{base} -whitening [*]	57.83	66.90	60.90	75.08	71.31	68.24	63.73	66.28
CT-BERT _{base} *	61.63	76.80	68.47	77.50	76.48	74.31	69.19	72.05
SimCSE-BERT _{base} (τ_0)	68.40	82.41	74.38	80.91	78.56	76.85	72.23	76.25
$SimCSE$ - $BERT_{base}(\tau^*)$	<u>71.37</u>	81.18	<u>74.41</u>	82.51	<u>79.24</u>	<u>78.26</u>	70.65	76.81
$ADNCE-BERT_{base}$	71.38	<u>81.58</u>	74.43	<u>82.37</u>	79.31	78.45	<u>71.69</u>	77.03
SimCSE-RoBERTa _{base} (τ_0)	70.16	81.77	73.24	81.36	80.65	80.22	68.56	76.57
SimCSE-RoBERTa _{base} (τ^*)	68.20	81.95	<u>73.63</u>	<u>81.83</u>	<u>81.55</u>	<u>80.96</u>	<u>69.56</u>	<u>76.81</u>
ADNCE-RoBERTa _{base}	<u>69.22</u>	<u>81.86</u>	73.75	82.88	81.88	81.13	69.57	77.10

Table 5: **Self-supervised representation learning on TUDataset**: The baseline results are excerpted from the published papers.

Methods	RDT-B	NCI1	PROTEINS	DD
node2vec	-	54.9±1.6	57.5±3.6	-
sub2vec	71.5 ± 0.4	$52.8 {\pm} 1.5$	$53.0{\pm}5.6$	-
graph2vec	75.8±1.0	$73.2{\pm}1.8$	$73.3 {\pm} 2.1$	-
InfoGraph	82.5±1.4	$76.2{\pm}1.1$	$74.4 {\pm} 0.3$	$72.9{\pm}1.8$
JOAO	85.3±1.4	$78.1 {\pm} 0.5$	$74.6 {\pm} 0.4$	$77.3 {\pm} 0.5$
JOAOv2	86.4±1.5	$78.4 {\pm} 0.5$	74.1 ± 1.1	77.4 ± 1.2
RINCE	90.9±0.6	$78.6{\pm}0.4$	$74.7 {\pm} 0.8$	$78.7 {\pm} 0.4$
GraphCL (τ_0)	89.5±0.8	77.9 ± 0.4	$74.4 {\pm} 0.5$	$78.6 {\pm} 0.4$
GraphCL (τ^*)	90.7±0.6	$79.2 {\pm} 0.3$	$74.7 {\pm} 0.6$	$78.5 {\pm} 1.0$
ADNCE	91.4±0.3	79.3±0.7	75.1±0.6	79.2±0.6

- I. The improvements of τ^* over τ_0 emphasize the significance of selecting a **proper** robustness radius.
- 2. ADNCE **outperforms** all baselines with a significant margin on four datasets

- We provide a novel perspective on contrastive learning (CL) via the lens of Distributionally Robust Optimization (DRO)
 - > key insights about the tolerance to sampling bias
 - \succ the role of au
 - the theoretical connection between DRO and MI
- U We propose a novel CL loss—ADNCE
 - > alleviate over-conservatism and sensitivity to outliers.

Thanks